Acta Cryst. (1970). B26, 436
A note on the structure of $\mathrm{Na}_{2} \mathrm{SeO}_{4}$. By A. KÁlmÁn* and D. W.J. Cruickshank, Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD, England
(Received 24 October 1969)
Improved coordinates for $\mathrm{Na}_{2} \mathrm{SeO}_{4}$ are given. The SeO_{4} tetrahedron is almost regular; the $\mathrm{Se}-\mathrm{O}$ distance is $1.654 \pm 0.021 \AA$.

The crystal structure of sodium selenate was determined by Náray-Szabó \& Argay (1963) using the fact that it is isomorphous with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (V-thenardite). The space group is Fddd (no. 70) with $a=6.099 \pm 0.006, b=12.590 \pm 0.016$, $c=10 \cdot 163 \pm 0.012 \AA, Z=8$. The structure consists of sodium cations occupying the $\left(\frac{1}{8}, \frac{1}{8}, z\right) 16$-fold position and isolated SeO_{4}^{2-} tetrahedra which have the selenium atom at one of the eightfold positions ($\frac{1}{8}, \frac{1}{8}, \frac{1}{8}$).

The z parameter for sodium and the x, y, and z parameters for oxygen were determined by a Fourier synthesis for the $0 k l$ projection and a difference Fourier section at the height of $x / a=-0.03$. The final residual R was 14.3%. As the atoms were assumed to have the same common isotropic vibration parameter and as no standard deviations were given, it appeared worth while to attempt to refine the structure for comparison with other orthoselenates.

The data used in the refinement were the 127 non-zero $\left|F_{0}\right|$ obtained from the original intensities, which were kindly offered by Náray-Szabó \& Argay. The reflexions on the layers $h=0,1,2,3$ were on independent scales. The parameters varied were the four scale factors, coordinates, an isotropic vibrational parameter for selenium and anisotropic parameters for sodium and oxygen. The form factors for neutral atoms were taken from International Tables for X-ray Crystallography (1962). Five cycles of full-matrix least-squares refinement reduced R to 11.0%. Owing to the small number of reflexions, and because the maximum value of the index h was only 3 , no better weighting scheme than $w=$ const. could be used. The effect of the low $h_{\text {max }}$ is apparent in the high estimated standard deviation for the oxygen x coordinate which is shown together with the other coordinates in Table 1 (for comparison, $k_{\text {max }}=16, l_{\text {max }}=12$). Table 2 gives the bond lengths and angles with their e.s.d.'s. The sodium-oxygen distances are given in Table 3.

* Permanent address: Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest, Hungary.

Table 1. Coordinates with their e.s.d.'s

	x / a	y / b	z / c
Se	$\frac{1}{\frac{1}{8}}$	$\frac{1}{8}$	$\frac{1}{8}$
Na	$\frac{1}{8}$	$\frac{1}{8}$	$0.4410^{(15)}$
O	$-0.0316(43)$	$0.0509(13)$	$0.2211(17)$

Table 3. Sodium-oxygen interatomic distances

$\mathrm{Na}(x, y, z) \cdots$	$\mathrm{O}(x, y, z)$	$2 \cdot 60 \AA$
$\mathrm{O}\left(\frac{1}{4}-x, \frac{1}{4}-y, \quad z\right)$	$2 \cdot 60$	
$\mathrm{O}\left(-x, \frac{1}{4}+y, \frac{1}{4}+z\right)$	$2 \cdot 31$	
$\mathrm{O}\left(\frac{1}{4}+x,-y, \frac{1}{4}+z\right)$	$2 \cdot 31$	
$\left.\mathrm{O} \frac{1}{2}+x, \frac{1}{4}-y, \frac{3}{4}-z\right)$	$2 \cdot 46$	
$\mathrm{O}\left(-\frac{1}{4}-x, y, \frac{3}{4}-z\right)$	2.46	

The SeO_{4}^{2-} anion has crystallographic 222 symmetry but is a regular tetrahedron within experimental error. The uncorrected value of the $\mathrm{Se}-\mathrm{O}$ bond length, $1.654 \pm 0.021 \AA$, is similar to the vibrationally corrected $\mathrm{Se}-\mathrm{O}$ mean distances $1.643 \pm 0.008 \AA$ in $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{SeO}_{4}$ [derived from Morosin (1969)] and $1.644 \pm 0.010 \AA$ in $\mathrm{K}_{2} \mathrm{SeO}_{4}$ (Kálmán, Stephens \& Cruickshank, 1969).

The authors are grateful to Dr I. Náray-Szabó and Mr Gy. Argay for drawing their attention to the data for $\mathrm{Na}_{2} \mathrm{SeO}_{4}$, and to Dr J. S. Stephens for computer programs. One of us (A.K.) wishes to thank the Science Research Council for financial support.

References

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kálmán, A., Stephens, J. S. \& Cruickshank, D. W. J. (1970). Acta Cryst. In the press.

Morosin, B. (1969). Acta Cryst. B25, 19.
Náray-Szabó, I. \& Argay, Gy. (1963). Acta Chim. Hung. 39, 85.

Table 2. Interatomic distances and angles with their e.s.d.'s

$\mathrm{Se}-\mathrm{O}$	$1.654(21) \AA$		
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2.701(24)$	$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(2)$	$109 \cdot 5(1 \cdot 2)^{\circ}$
$\mathrm{O}(1) \cdots \mathrm{O}(3)$	$2.732(31)$	$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(3)$	$111.4(0.9)$
$\mathrm{O}(1) \cdots \mathrm{O}(4)$	$2.669(31)$	$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(4)$	$107.6(0.9)$

